CEA : ETUDE DES POSSIBILITÉS D’OPTIMISATIONS ET D’ACCÉLÉRATIONS HARDWARES DANS LE CODE NARMER-1 (H/F)

Poste
Stage (72 mois)
Activités de l'entreprise
Nucléaire, Energie
Localisation
Gif-sur-Yvette (91, Essonne)

Inscrivez-vous !

En vous inscrivant sur Engagement Jeunes, recevez les offres qui vous correspondent et rendez vous visible des recruteurs.

Présentation de la société : CEA

Le CEA est un acteur majeur de la recherche, au service des citoyens, de l'économie et de l'Etat.

Il apporte des solutions concrètes à leurs besoins dans quatre domaines principaux : transition énergétique, transition numérique, technologies pour la médecine du futur, défense et sécurité sur un socle de recherche fondamentale. Le CEA s'engage depuis plus de 75 ans au service de la souveraineté scientifique, technologique et industrielle de la France et de l'Europe pour un présent et un avenir mieux maîtrisés et plus sûrs.

Implanté au cœur des territoires équipés de très grandes infrastructures de recherche, le CEA dispose d'un large éventail de partenaires académiques et industriels en France, en Europe et à l'international.

Les 20 000 collaboratrices et collaborateurs du CEA partagent trois valeurs fondamentales :

• La conscience des responsabilités
• La coopération
• La curiosité

Missions

Le SERMA développe des outils de calcul pour la radioprotection, notamment le code de référence Monte-Carlo TRIPOLI-4® [1] et le code simplifié NARMER-1 [2]. Ce dernier, successeur du code MERCURE-6, permet un calcul de l’atténuation des photons gamma en ligne droite dans des géométries à trois dimensions pour notamment calculer des débits d’équivalent de dose, en tenant compte du flux provenant de la diffusion par l’intermédiaire de facteurs d’accumulation, appelés « buildup » en anglais. Un second mode de mise en œuvre du code propose d’évaluer la contribution du courant réfléchi des photons par une paroi, en exploitant une bibliothèque pré-calculée d’albédos doublement différentiels en angle et en énergie.

L’objectif du stage est dans un premier temps de dresser un panorama des matériels actuels (architectures CPU, GPU, etc.) , des outils (compilateurs, etc.) , des librairies (OptiX, Kokkos, etc.) , des langages associés (C++, CUDA, etc.) , des méthodes (BVH, etc.) et algorithmes envisageables en général et dans le cas NARMER-1 en particulier (transport simplifié de photons gamma) , ainsi que les tendances d’évolution. Après analyse et discussion, il s’agira de choisir certaines voies parmi les plus adéquates, prometteuses, et réalistes en fonction également des équipements disponibles, afin d’illustrer leurs mises en œuvre classiques et de démontrer au passage une maîtrise suffisante. Ces mises en œuvre pourront commencer sur des maquettes autonomes, et ensuite, de façon réaliste se placer en concurrence de sous-parties de l’algorithme actuel de calcul de NARMER-1.
Le stage permettra de mettre en œuvre les connaissances du transport de photons gamma dans la matière et les savoir-faire en terme d’exploitation des optimisations disponibles et des matériels hardwares actuels. Il sera l’occasion de prendre en main et d’exploiter le code NARMER-1 utilisé dans l’industrie, notamment à EDF. Le stage permettra également de mobiliser et développer des compétences d’analyse et de méthodologie, dans la conduite d’un travail qui reposera sur un socle scientifique et technique parfaitement maîtrisé et qui ciblera un fort besoin industriel.

[1] E. Brun, F. Damian, C.M. Diop, E. Dumonteil, F.X. Hugot, C. Jouanne, Y.K. Lee, F. Malvagi, A. Mazzolo, O. Petit, J.C. Trama, T. Visonneau, A. Zoia, Tripoli-4®, CEA, EDF and AREVA reference Monte Carlo code, Annals of Nuclear Energy 82, 151-160 (2015) .

[2] T. Visonneau, L. Pangault, F. Malouch, F. Malvagi and F. Dolci, NARMER-1: a photon point-kernel code with build-up factors, EPJ Web of Conferences 153, 06028 (2017) .

Profil recherché

M2 / Ecole d'ingénieur, avec un goût prononcé pour la simulation numérique, la programmation scientifique et le calcul HPC