RENAULT GROUP : DOCTORANT PHD THESIS CIFRE "SENSOR DATA FUSION ARCHITECTURES (EARLY, MIDDLE, LATE) TO INCREASE PERFORMANCE AND ROBUSTNESS OF ADAS/AD (AD L2+/L3, NCAP, AUTOMATED PARKING) AND TO OPTIMIZE HARDWARE/SOFTWARE IMPLEMENTATION CONSTRAINTS" (H/F)

Poste
Thèse
Niveau d'étude
Bac+5 (Master / Ingénieur)
Univers
Automobile et mobilité
Localisation
Valbonne (06, Alpes-Maritimes)

Inscrivez-vous !

En vous inscrivant sur Engagement Jeunes, recevez les offres qui vous correspondent et rendez vous visible des recruteurs.

Présentation

Thesis subject description

The introduction of advanced driver-assistance systems (ADAS) has considerably enhanced the driving experience by providing automation of driving tasks, like lane keeping assist, contextual cruise control, automated emergency braking, etc. Safety and driving comfort are at the center of these changes. The reliability of ADAS features strongly relies on the robustness of the perception system beneath it. Perception system fuses information from different sensors (e.g., front camera, front radar, side radars, sonar, …) in order to obtain a reliable description of the world environment.

There are plenty of multi-sensor fusion architectures proposed in the literature (in particular, late fusion, early fusion, mid-fusion, hybrid fusion) . The main differences are the latent spaces in which data fusion is performed and the complexity of the sensor specific treatment, which inherently impacts both sensor fusion performances and complexity. The general tendency in the literature seems to spotlight deep raw-data fusion.

In this thesis, we would like to investigate the different approaches for sensor data fusion along with next generation of sensor data fusion with a focus on AD L2+ and L3 use cases. The main challenges will be to correlate a sensor fusion architecture with both a software and hardware/electronic architecture implementation and their constraints (memory, computational power, data flow, latencies) in order to meet AD performances and AEB critical uses cases (and in particular the most challenging use cases from NCAP 2029) . The focus will be on quantifying the gain or necessity to have more complex sensor fusion algorithms to tackle specific AD uses cases. Concrete examples and demonstrations will be developed both in simulation (with real driving data) and in a prototype vehicle.

This thesis will rely on Ampere facilities and experience both in electronic/hardware/software vehicle architecture and perception system.

Your missions

A PhD thesis allows you to develop several skills to enable you to carry independent research and, at the same time, to develop the know-how on key technologies. You shall have the opportunity to formulate novel solutions whilst making the most of our prototype platforms and driving data. You will need to gain a strong understanding of sensor data fusion and principles of machine learning & deep learning from the autonomous drive perspective and gain critical thinking to formulate the problem, propose solutions, and test them.

Your profile

You should be completing or have Bac+5-level degree: an engineering diploma or a Master of Science in Engineering (Electrical Engineering, Signal Processing, Computer Science, Machine Learning, …) . You are very much interested in perception systems and sensor data fusion along with self-learning algorithms (machine learning and deep learning) . It is very important to be curious, willing to learn new techniques. You will have the opportunity to formulate your own ideas, to test them on Renault driving database or in Renault prototype vehicles. Strong technical background in signal processing, fundamentals of machine learning & deep learning, programming (C, Python) and scripting skills are required.

A working knowledge of the English language is required. You will have to interact with team members and several Renault divisions, at different levels.

Métier

Transverse

Durée du contrat

36 months

Renault Group s’engage à créer un environnement de travail inclusif et les conditions permettant à chacun de nous d’apporter sa passion, donner le meilleur de lui-même et s’épanouir, tout en étant lui-même.

Nous trouvons notre force dans notre diversité et nous nous engageons à garantir l'égalité des chances en matière d'emploi, indépendamment de la couleur, de l'ascendance, de la religion, du sexe, de l'origine nationale, de l'orientation sexuelle, de l'âge, de la citoyenneté, de l'état civil, du handicap, de l’identité de genre, etc. Si vous avez un handicap ou un besoin particulier nécessitant l’aménagement du poste de travail ou de l’horaire de travail, merci de nous le faire savoir en remplissant ce formulaire.

Afin de pouvoir suivre en temps réel l'évolution de vos candidatures et pouvoir rester en contact avec nous, nous vous invitons à créer un compte candidat. Cela ne vous prendra pas plus d’une minute et vous permettra également de faciliter vos prochaines candidatures.

En soumettant votre CV ou votre candidature, vous autorisez Renault Group à utiliser et stocker des informations vous concernant à des fins de suivi de votre candidature ou de futurs emplois. Ces informations ne seront utilisées que par les sociétés de Renault Group tel que mentionné dans la Politique Groupe de protection des données personnelles.